Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Gastroenterol ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38587286

RESUMEN

INTRODUCTION: To investigate whether increased intrapancreatic fat deposition (IPFD) heightens the risk of diseases of the exocrine and endocrine pancreas. METHODS: A prospective cohort study was conducted using data from the UK Biobank. IPFD was quantified using MRI and a deep learning-based framework called nnUNet. The prevalence of fatty change of the pancreas (FP) was determined using sex- and age-specific thresholds. Associations between IPFD and pancreatic diseases were assessed with multivariate Cox-proportional hazard model adjusted for age, sex, ethnicity, body mass index, smoking and drinking status, central obesity, hypertension, dyslipidemia, liver fat content, and spleen fat content. RESULTS: Of the 42,599 participants included in the analysis, the prevalence of FP was 17.86%. Elevated IPFD levels were associated with an increased risk of acute pancreatitis (hazard ratio [HR] per 1 quintile change 1.513, 95% confidence interval [CI] 1.179-1.941), pancreatic cancer (HR per 1 quintile change 1.365, 95% CI 1.058-1.762) and diabetes mellitus (HR per 1 quintile change 1.221, 95% CI 1.132-1.318). FP was also associated with a higher risk of acute pancreatitis (HR 3.982, 95% CI 2.192-7.234), pancreatic cancer (HR 1.976, 95% CI 1.054-3.704), and diabetes mellitus (HR 1.337, 95% CI 1.122-1.593, P = 0.001). DISCUSSION: FP is a common pancreatic disorder. Fat in the pancreas is an independent risk factor for diseases of both the exocrine pancreas and endocrine pancreas.

2.
Biochem Biophys Res Commun ; 704: 149613, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38387325

RESUMEN

Myocardial dysfunction is a prevalent complication of sepsis (septic cardiomyopathy) with a high mortality rate and limited therapeutic options. Naringenin, a natural flavonoid compound with anti-inflammatory and antioxidant properties, holds promise as a potential treatment for sepsis-induced myocardial dysfunction. This study investigated the pharmacological effects of naringenin on septic cardiomyopathy. In vivo and in vitro experiments demonstrated that naringenin improved cardiomyocyte damage. Network pharmacology and database analysis revealed that HIF-1α is a key target protein of naringenin. Elevated expression of HIF-1α was observed in damaged cardiomyocytes, and the HIF-1α inhibitor effectively protected against LPS-induced cardiomyocyte damage. Molecular docking studies confirmed the direct binding between naringenin and HIF-1α protein. Importantly, our findings demonstrated that naringenin did not provide additional attenuation of cardiomyocyte injury on the biases of HIF-1α inhibitor treatment. In conclusion, this study proves that naringenin protects against septic cardiomyopathy through HIF-1α signaling. Naringenin is a promising therapeutic candidate for treating septic cardiomyopathy.


Asunto(s)
Cardiomiopatías , Flavanonas , Sepsis , Animales , Ratones , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/etiología , Cardiomiopatías/prevención & control , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , Miocitos Cardíacos/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia
3.
Biol Cell ; 116(1): e202300042, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37919852

RESUMEN

BGROUND INFORMATION: Ferroptosis contributes to temporomandibular joint osteoarthritis (TMJOA) lesion development and is still poorly understood. RESULTS: In this study, we used different TMJOA animal models to examine whether ferroptosis was related to disease onset in TMJOA induced by monosodium iodoacetate (MIA), IL-1ß, occlusion disorder (OD), and unilateral anterior crossbite (UAC). Immunohistochemical staining and Western blot analysis were used to detect ferroptosis- and cartilage degradation-related protein expression. Our results revealed reduced levels of the ferroptosis-related protein GPX4 in the cartilage layer, but the levels of ACSL4 and P53 were increased in the condyle. Injection of the ferroptosis inhibitor liproxstatin-1 (Lip-1) effectively decreased ACSL4, P53 and TRF expression. In vitro, IL-1ß reduced cartilage extracellular matrix expression in mandibular condylar chondrocytes (MCCs). Lip-1 maintained the morphology and function of mitochondria and ameliorated the exacerbation of lipid peroxidation and reactive oxygen species (ROS) production induced by IL-1ß. CONCLUSION: These results suggest that chondrocyte ferroptosis plays an important role in the development and progression of TMJOA. SIGNIFICANCE: Inhibiting condylar chondrocyte ferroptosis could be a promising therapeutic strategy for TMJOA.


Asunto(s)
Cartílago Articular , Ferroptosis , Quinoxalinas , Compuestos de Espiro , Ratas , Animales , Condrocitos/metabolismo , Condrocitos/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/farmacología , Ratas Sprague-Dawley , Cartílago Articular/metabolismo , Cartílago Articular/patología , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología
4.
Redox Biol ; 64: 102787, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392517

RESUMEN

INTRODUCTION: Irisin is a newly discovered myokine which links exercise to inflammation and inflammation-related diseases through macrophage regulation. However, the effect of irisin on the activity of inflammation related immune cells (such as neutrophils) has not been clearly described. OBJECTIVES: The objective of our study was to explore the effect of irisin on the neutrophil extracellular traps (NETs) formation. METHODS: Phorbol-12-myristate-13-acetate (PMA) was used to construct a classic neutrophil inflammation model that was used to observe the formation of NETs in vitro. We studied the effect of irisin on NETs formation and its regulation mechanism. Subsequently, acute pancreatitis (AP) was used to verify the protective effect of irisin in vivo, which was an acute aseptic inflammatory response disease model closely related to NETs. RESULTS: Our study found that addition of irisin significantly reduced the formation of NETs via regulation of the P38/MAPK pathway through integrin αVß5, which might be the one of key pathways in NETs formation, and which could theoretically offset the immunoregulatory effect of irisin. Systemic treatment with irisin reduced the severity of tissue damage common in the disease and inhibited the formation of NETs in pancreatic necrotic tissue of two classical AP mouse models. CONCLUSION: The findings confirmed for the first time that irisin could inhibit NETs formation and protect mice from pancreatic injury, which further elucidated the protective effect of exercise on acute inflammatory injury.


Asunto(s)
Trampas Extracelulares , Pancreatitis , Ratones , Animales , Trampas Extracelulares/metabolismo , Pancreatitis/metabolismo , Fibronectinas/farmacología , Fibronectinas/metabolismo , Enfermedad Aguda , Neutrófilos/metabolismo , Inflamación/metabolismo , Acetato de Tetradecanoilforbol/metabolismo , Acetato de Tetradecanoilforbol/farmacología
5.
J Clin Med ; 12(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37048616

RESUMEN

The inflammatory immune response mediated by neutrophils is closely related to the progression of acute pancreatitis. Previous studies confirmed that CD177 is a neutrophil-specific marker involved in the pathogenesis of conditions such as systemic vasculitis, asthma, and polycythemia vera. Neutrophil extracellular trap (NET) formation is a specific death program by which neutrophils release nuclear DNA covered with histones, granule proteins, etc. It also plays an important role in host defense and various pathological reactions. However, the function of CD177 in regulating the generation of NETs and the development of acute pancreatitis (AP) is unclear. In our manuscript, CD177 was significantly elevated in blood neutrophils in patients and positively correlated with the AP disease severity. Then, recombinant human CD177 protein (rhCD177) could significantly improve pancreatic injury and the inflammatory response in AP mice, and reduce AP-related lung injury. Mechanistically, we found that rhCD177 could inhibit the formation of NETs by reducing reactive oxygen species (ROS) and myeloperoxidase (MPO)/citrullinated histone H3 (CitH3) release. For the first time, we discovered the potential of rhCD177 to protect AP in mice and inhibit the NET formation of AP. CD177 may be a potential treatment strategy for preventing or inhibiting the aggravation of AP.

6.
Biochem Biophys Res Commun ; 654: 26-33, 2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-36889032

RESUMEN

The persistent activation of neutrophils and the excessive neutrophil extracellular traps (NETs) formation are the main determinants of pancreatic tissue injury and systemic inflammatory response in acute pancreatitis (AP). Thus, inhibiting the release of NETs can effectively prevent the aggravation of AP. Here, our study showed that the pore-forming protein gasdermin D (GSDMD) was activity in neutrophils of AP mice and patients and played the vital role in NETs formation. Through the application of GSDMD inhibitor or the construction of neutrophil GSDMD specific knockout mice, it was found in vivo and in vitro that inhibition of GSDMD could block the NETs formation, reduce pancreatic injury, systemic inflammatory reaction and organ failure in AP mice. To sum up, our findings confirmed that neutrophil GSDMD was the therapeutic target for improving the occurrence and development of AP.


Asunto(s)
Trampas Extracelulares , Pancreatitis , Ratones , Animales , Trampas Extracelulares/metabolismo , Pancreatitis/prevención & control , Pancreatitis/metabolismo , Gasderminas , Enfermedad Aguda , Neutrófilos/metabolismo , Ratones Noqueados
7.
Connect Tissue Res ; 64(3): 248-261, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36469671

RESUMEN

PURPOSE: Functional appliances made of permanent magnets have been used in jaw orthopedic treatment. However, whether the static magnetic field (SMF) generated by permanent magnets promotes the developmental sequence of condylar cartilage and thus promotes the growth of the mandible remains to be studied. The aim of this study was to investigate the effects of 280 mT SMF on postnatal condylar chondrogenesis and endochondral ossification and the roles of FLRT3, FGF2 and BMP2 signaling in this chondrodevelopmental sequences. METHODS: Forty-eight rats were assigned to two groups (control and SMF). The condyles were collected at the specified time points. The histomorphological changes in the condyle were observed by histological staining. The expression of proteins related to the proliferation and differentiation of the condylar cartilage and the changes in subchondral bone microstructure were analyzed by immunohistochemical staining and micro-CT scanning. FLRT3, FGF2, and BMP2 expression was detected by immunofluorescence staining. RESULTS: Under SMF stimulation, the cartilage of young rats grew longitudinally and laterally, and the thickness of the cartilage became thinner as it grew. The SMF promoted the proliferation and differentiation of condylar chondrocytes and endochondral ossification and increased subchondral bone mineral density, and BMP2 signaling was involved. Moreover, under SMF loading, the increased expression of FGF2 and FLRT3 were involved in regulating cartilage morphogenesis and growth. In late development, the decreased expression of FGF2/FLRT3 and the increased expression of BMP2 promoted endochondral ossification. The SMF accelerated this opposite expression trend. CONCLUSION: FGF2/FLRT3 and BMP2 signals are involved in the regulatory effect of SMF exposure on chondrogenesis and endochondral ossification, which provides a theoretical basis for the clinical use of magnetic appliances to promote condylar growth.


Asunto(s)
Cartílago , Factor 2 de Crecimiento de Fibroblastos , Femenino , Ratas , Animales , Cartílago/metabolismo , Condrocitos/patología , Osteogénesis/fisiología , Cóndilo Mandibular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo
8.
Oxid Med Cell Longev ; 2021: 4187398, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34840668

RESUMEN

As a calcium-regulated protein, CaMK II is closely related to cell death, and it participates in the development of pathological processes such as reperfusion injury, myocardial infarction, and oligodendrocyte death. The function of CaMK II activation in acute pancreatitis (AP) remains unclear. In our study, we confirmed that the expression of p-CaMK II was increased significantly and consistently in injured pancreatic tissues after caerulein-induced AP. Then, we found that KN93, an inhibitor of CaMK II, could mitigate the histopathological manifestations in pancreatic tissues, reduce serum levels of enzymology, and decrease oxidative stress products. Accordingly, we elucidated the effect of KN93 in vitro and found that KN93 had a protective effect on the pancreatic acinar cell necroptosis pathway by inhibiting the production of ROS and decreasing the expression of RIP3 and p-MLKL. In addition, we identified the protective effect of KN93 on AP through another mouse model induced by pancreatic duct ligation (PDL). Together, these data demonstrated that CaMK II participates in the development of AP and that inhibiting CaMK II activation could protect against AP by reducing acinar cell necroptosis, which may provide a new idea target for the prevention and treatment of AP in the clinic.


Asunto(s)
Células Acinares/efectos de los fármacos , Bencilaminas/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Necroptosis , Pancreatitis/prevención & control , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sulfonamidas/farmacología , Células Acinares/metabolismo , Células Acinares/patología , Animales , Ceruletida/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Pancreatitis/inducido químicamente , Pancreatitis/metabolismo , Pancreatitis/patología
9.
Int J Biochem Cell Biol ; 141: 106112, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34715362

RESUMEN

Temporomandibular joint osteoarthritis (TMJOA) is a chronic degenerative joint disease characterized by extracellular matrix (ECM) degradation and chondrocyte apoptosis. The aim of this study was to investigate the role of PRMT1 in TMJOA pathogenesis and its underlying molecular mechanism. Compared to the control group, PRMT1 was highly expressed in IL-1ß-treated chondrocytes and articular cartilage following MIA injection into rat TMJs. Furthermore, knocking down PRMT1 considerably inhibited ECM degradation and apoptosis induced by IL-1ß. Mechanistic analyses further revealed that PRMT1 knockdown activated the PI3K/AKT signaling pathway and prevented FOXO1 from translocating to the nucleus. Moreover, an inhibitor of AKT (LY294002) rescued the effect of PRMT1 knockdown on IL-1ß-induced ECM degradation and apoptosis, and AMI-1, a selective inhibitor of PRMT1, inhibited PRMT1 expression and reversed the pathological progress of TMJOA. Thus, our findings suggest that PRMT1 plays an essential role in ECM degradation and chondrocyte apoptosis in TMJOA via the AKT/FOXO1 signaling pathway.


Asunto(s)
Condrocitos , Animales , Masculino , Osteoartritis , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas
10.
Biochem Biophys Res Commun ; 572: 72-79, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34358966

RESUMEN

Hypoxia-inducible factor-1α (Hif1α) is activated in hypoxia and is closely related to oxidative stress, immunity and cell metabolism. Recently, it is reported that Hif1α is involved in atherosclerosis, ischemia-reperfusion (I/R) injury, alcoholic liver disease and pancreatic tumors. In this study, we found that Hif1 signal pathway is significantly changed in pancreas of acute pancreatitis (AP) mice. Meanwhile, we verified that the high expression of Hif1α injured pancreatic tissues of cerulean-induced AP mice, which prompting that Hif1α participated in the progress of histopathology on AP. We applied a Hif1α inhibitor PX478 and observed that it could alleviate histological injury of pancreas as well as the levels of serum amylase, lipase and proinflammatory cytokine in the murine model of AP induced by caerulein. In addition, PX478 could reduce the formation of necrosome (RIP3 and p-MLKL) and the generation of reactive oxygen species (ROS) in AP mice. Correspondingly, we further confirmed the effectiveness of PX478 in vitro and found that inhibiting Hif1α could mitigated the necrosis of pancreatic acinar cells via reducing the RIP3 and p-MLKL expression and the ROS production. In conclusion, inhibiting Hif1α could protect against acinar cells necrosis in AP, which may provide a new target for the prevention and treatment of AP clinically.


Asunto(s)
Células Acinares/efectos de los fármacos , Modelos Animales de Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Compuestos de Mostaza/farmacología , Necrosis/tratamiento farmacológico , Pancreatitis/tratamiento farmacológico , Fenilpropionatos/farmacología , Células Acinares/metabolismo , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Necrosis/metabolismo , Pancreatitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...